Wiren Board Connectivity Issue from Russian ISPs
Summary
Users in Russia are experiencing connection issues accessing Wiren Board's cloud interface at `*.wirenboard.cloud`. Network logs show that while initial assets are loading, key JavaScript files (including React-based front-end scripts) fail with `net::ERR_HTTP2_PROTOCOL_ERROR`. This prevents the interface from functioning properly.
Observed Behavior
Occurs without VPN on multiple Russian ISPs.
Different browsers and systems affected equally.
Failures observed in scripts critical to React application initialization.
Network tools show `net::ERR_HTTP2_PROTOCOL_ERROR` and `ERR_BLOCKED_BY_ORB`.
Static resources (e.g. CSS) load correctly, but JavaScript files fail.
Technical Analysis
The application is built with React (evident from file names like `react.70de11236f5807c6b07c.js` and usage of `main.[hash].js`).
React applications rely heavily on dynamic loading and client-side routing.
React frontends often serve minimal HTML shells and depend on JavaScript bundles to render and manage the UI. Blocking or corruption of these assets results in a completely non-functional app.
React uses dynamic imports and sometimes HTTP/2 multiplexing, both of which can be disrupted by DPI (deep packet inspection) or protocol interference.
Failure in just one of the initial JavaScript bundles (like `main.js`, `vendor.js`, or `react.js`) prevents the entire app from bootstrapping.
In contrast to traditional server-rendered apps, React apps often lack usable fallbacks, which makes these failures more visible and disruptive.
Likely Cause
Selective deep packet inspection (DPI) or protocol throttling by Russian regulators (Roskomnadzor) affecting access to foreign services like DigitalOcean, Cloudflare, etc.
HTTP/2-specific filtering or corruption—likely during SSL/TLS traffic inspection.
Blocking or corruption of fingerprinted JS files (frequently updated by CDNs) can disrupt front-end frameworks like React.
Why This Breaks React Apps More Easily
React single-page applications (SPA) are sensitive to the failure of initial JS bundles.
Partial loading (e.g. stylesheets OK, scripts blocked) leads to a blank or broken UI.
Unlike traditional websites, fallback content is often minimal, compounding the visibility of the issue.
React apps often depend on background requests and component lazy-loading. If these requests are blocked or delayed, critical parts of the UI may never appear.
Advice for Wiren Board Team
Implement fallback HTML or minimal functional UI for broken JS situations.
Provide alternate domains hosted through geographically or politically neutral CDNs.
Avoid over-reliance on HTTP/2 and consider fallback routes for HTTP/1.1.
Split large JS bundles to reduce triggering DPI filters that inspect for signatures.
Add `noscript` and meta-refresh fallbacks to redirect to a lightweight diagnostics page.
Use server-side rendering (SSR) or partial hydration where possible to allow minimal interactivity even if JS fails.
Workaround Options for Users (Non-VPN Methods)
Try HTTP over HTTP/1.1: Use proxy servers that downgrade HTTP/2 to HTTP/1.1.
Use mobile networks or different providers not yet affected.
Download and self-host control panel locally (if provided by manufacturer).
Request Wiren Board to provide static snapshots or embedded local access versions.
Corporate firewalls or DNS-based routing tools can allow selective domain-based routing for critical services.
Conclusion
The issue is not on the user's local device or browser. The connectivity failure results from a combination of how React-based apps rely on CDN-loaded dynamic JS and ongoing regional filtering by Russian authorities affecting HTTP/2 and international CDNs. Alternative delivery or internal hosting options may help circumvent the problem without resorting to VPNs.
