

RS485/Analog PM2.5/10 Sensor

Manual

Weihai Gemho Digital Mine Co., Ltd

Chapter I Product Overview

1.1 Introduction

PM 2.5 &10 sensor is a new integrated sensor, which can obtain PM2 in the environment of the equipment through the acquisition equipment Value of PM2.5 / 10.

1.2.Product description

The sensor adopts the principle of laser scattering, and the detection range is 0-999 μ G / m3, long service life, 16000 hours of continuous operation under normal temperature and pressure (the service time can be extended accordingly by controlling the working time of the light source), strong anti-interference ability, meeting the requirements of iec61000 electromagnetic compatibility, ultra silent design, and the noise is as low as 17 dB.

1.3 Sensor Characteristics

Low power consumption, high precision, high sensitivity, wide linear range, strong anti-interference ability, excellent repeatability and stability.

1.4 Applicable scenarios

Air conditioning, automobile purifier, fresh air system, air purifier, air quality detection instrument, industrial dust detection system.

Chapter II Product Introduction

2.1 Product Appearance

2.2 Power Supply

The user provides the equipment with a DC power supply with an input of $9 \sim 18$ V. We can use the 220VAC to DC power supply provided by us, or use 12V solar panel and battery for power supply to meet the needs of different occasions.

Name	Parameter	
POWER SUPPLY	9-18V DC	
Output Signal	RS485/0-5V/0-10V/4-20mA	
Measuring Range	PM2.5:0-999ug/m ³	
	PM10:0-1500ug/m ³	
PM2.5	$\pm 10\%$ or \pm ug, Take the larger value	
Particle size resolution	0.3um	
Mass concentration data	lug/m ³	
resolution		

2.3 Main Product Parameters

Response Time	≤10s
Size	72mm*45mm*15mm
Temperature	5°C~45°C
Humidity	15%RH~90%RH
Pressure	Atmospheric Pressure± 10%
Waterproof Grade	IP67

Chapter III System Architecture

3.1 RS485 Output Signal

The sensor is powered by 12V DC power supply and connected to PLC with RS485 interface. It can also be connected to MCU through RS485 interface chip. The MCU and PLC are programmed through the Modbus protocol specified later. Or use USB to RS485 to connect with the computer, and use the sensor configuration tool provided by our company for configuration and testing. Theoretically, one bus can connect more than 16 RS485 sensors. If more RS485 sensors need to be connected, RS485 repeaters can be used to expand more RS485 devices.

3.2 Analog Output

Using 12V DC power supply, the sensor can be connected with acquisition equipment such as PLC or single chip microcomputer. Through the measured voltage or current value, the real-time data collected by the sensor can be obtained.

Chapter IV Installation And Wiring Instructions

4.1 Equipment List

■NH3 Gas Sensor

■2pcs M3 screws

■ Product Certificate, Warranty Card And Manual

■Power Adapter (optional)

4.2 Installation Instructions

The equipment adopts wall mounted installation design.

Installation openings are reserved on both sides and can be vertically

fixed on the wall through m3 screws or expansion screws.

4.3 Wiring Instructions

(1) RS485 Line Description

Name	Line Name	Line Color
Derroe Complex	Positive power supply	Red
Power Supply	Negative power supply	Black
Ordered Signal	RS485A	Green
Output Signal	RS485B	Yellow

(2) Analog Line Description

Name	Line Name	Line Color
Dowor Sumply	Positive power supply	Red
Power Supply	Negative power supply	Black
Output Signal	PM2.5 Current/Voltage	Green
Output Signal	PM10 Current/Voltage	Yellow

Be Careful:

Please follow the wiring instructions strictly, otherwise it is easy to cause

excessive current and damage the equipment.

If the power adapter is not purchased in our company, it is equipped with 4-core wire, and the customer needs to prepare 9-18vdc power supply by himself.

For customers who have purchased power adapters from our company, we will connect the DC female head to the equipment before the equipment leaves the factory. After receiving the product, the customer can plug in directly to supply power to the equipment.

Chapter V RS485 Communication Protocol And Host

Computer Configuration

Parameter	Content	
Coding	8 bit Binary	
Data bit	8-bit	
Parity bit	Without	
Stop bit	1-bit	
Error Check	CRC (redundant cyclic code)	
Baud Rate	9600 bit/s	

5.1 RS485 Communication Protocol And Description

5.2 Data frame format definition

Adopt Modbus-RTU communication protocol, the format is as

follows:

Initial structure ≥ 4 bytes of time Address code = 1 byte Function code = 1 byte Data area = N bytes Error check = 16-bit CRC code

End structure \geq 4 bytes of time

Address code: is the address of the transmitter, which is unique in the communication network (factory default 0x01). Function code: The instruction function of the command sent by the host. This transmitter only uses function code 0x03 (read register data). Data area: The data area is the specific communication data. Note that the16-bit data high byte is in front!

CRC code: Two-byte check code.

(1) Read PM2 of device address 0x01 5 and PM10 values

Inquiry Frame:

Address	Function	Register	Register	CRC L	CRC H
Code	Code	Start	Length		
		Address			
0x01	0x03	0x00,0x0C	0x00,0x02	0x04	0x08

Answer Frame:

Address	Function	Effective	PM2.5	PM10	CRC L	CRC H
Code	Code	number of				
		bytes				
0x01	0x03	0x04	0x00,0x55	0x00, 0x9C	0xEA	0x4A

PM2.5 值: 0055H(HEX)=85=85ug/m³

PM10 值: 009CH(HEX)=156=156ug/m³

(2) Query device address

Reading the current device address can only be completed independently by a single offline sensor.

Example of querying equipment address:

Send: FF 03 00 0f 00 01 A1 D7

Return: FF 03 01 00 60

The data returned by the sensor 0x01 is the device address 0x01.

(3) Example of modifying equipment address:

Code	Function	Data	New	CRC L	CRC H
Address	Code	Address •	Address		
	06	0x00,0x0F	H, L		

explain:

1. The range of address code is $0x01 \sim 0xFE$, and the default value is

0x01;

2. This machine only supports writing the sensor address value. When

writing, the high-order address is in the front and the low-order address is

in the back;

3. When the device address is not known, the address code is written to

FF

Example of writing sensor address:

Change 01 address to 09 address:

Send: 01 06 00 0f 00 09 79 CF

Return: 01 06 01 09 20 4F

5.3 Upper computer reads equipment data and software

configuration

(1) Connect the device to the computer The device is connected to the computer serial port through "RS485 to

USB" or "RS485 to 232" devices.

(2) Check whether the device is connected

1) Open the computer device manager, check whether a new device is added under the port (COM and LPT), and remember the port number of this device (the following figure is only a schematic diagram, and the port numbers displayed on different computers are different)

((3) Read Data

1) Run "environmental monitoring setting software".

=

Environmental Monitoring	Setup Software				-	X 🗆
Sensor Type					RS485 RJ45	
🗌 Air Temperature	🗌 Air Humidity	Illuminance	🗌 Carbon Dioxide	🗌 Soil Temperature	System Configuration	
🗌 Soil Moisture	🗆 Soil EC Value	🗆 Soil PH	🗌 Wind Speed	🗌 Wind Direction	Serial Port:	C
🔲 PM2. 5	D PM10	🗆 Noise	🗌 Ammonia	🗌 Ultraviolet Rays		Device
🗌 Oxygen	🗌 Carbon Monoxide	🗌 Ozone	🗌 Rainfall	🗌 Rain and Snow	Baud Rate: 9600 🗸 🗸	
🗖 Time	Evaporation	🗌 water DO sensor	🗌 water temperature	🗆 water PH	Access to information	
🗌 water ORP	🗖 water EC				Device Address'	
						Read Data
Relay 1 🗸 Param	eter Configuration				Current address	
	Sensor Type:				Read Interval (s): 2	
Automatic		0.00		20	0.11	
Logic inversion:	Alarm Upper Limit:	Upper	r Limit of Control 0.0	Set Up	Collection Settings	
NO ~	Lower Alarm Limit	0.00 🗘 Lower	r Control Limit 0.0	00	Set Interval(min):	J Set Up
					Communication Settings	
○ Manual					Set Device Address:	Set Up
Opening and Closin	ng Settings: Open					
Real-time Data 1						Clear
						~
						~

2) RS485:

Select serial port number and baud rate (9600 by default, don't selected)

RS485	RJ45		
Syste	em Configuratio	n	
Seri	al Port:	~	Connect Device
Baud	Rate: 9600	~	
Acces	s to informati	on	
Devic	e Address:		
	Current addres	s	Read Data
Read	Interval (s):	2	
Colle	action Settings		
Set I	nterval(min):	1	Set Up
Comm	mication Setti	ngs	
Set D	evice Address:		Set Up

COM11	•	连接设备
9600	-	江汉反田
	COM11 9600	COM11 -

After the device is connected, the device address in [information

acquisition] is loaded; In [sensor type selection], the function set in the

current panel is checked by default; The checked function list is displayed

in [real time data]. As shown in The

figure

Environmental Monitoring Setup Software				
Sensor Type				
🗌 Air Temperature	🗌 Air Humidity	🗌 Illuminance	🗌 Carbon Dioxide	🗹 Soil Temperature
🗌 Soil Moisture	🗹 Soil EC Value	🗹 Soil PH	🗌 Wind Speed	🗌 Wind Direction
🗖 PM2.5	PM10	🔲 Noise	🗌 Ammonia	🗌 Ultraviolet Rays
🗖 Oxygen	🗌 Carbon Monoxide	🗖 Ozone	🗖 Rainfall	🗖 Rain and Snow
🗌 Time	Evaporation	🗌 water DO sensor	🗌 water temperature	e 🗌 water PH
🗖 water ORP	🗖 water EC			
Relay 🔒 🗸 Rerama	eter Configuration			
	Sensor Type:			
Automatic		0.00		00
Logic inversion:	Alarm Upper Limit:		er Limit of Control	Set Up
NO	Lower Alarm Limit	0.00 🗧 Low	er Control Limit 0.	. 00
0.11				
Upening and Closin	g Settings: Upen			
Real-time Data 1				
Soil Temperature	e Soil EC Val	lue Soil	PH	
°C	115	s/cm -		
		,, om		

If the current device address is changed or empty, you can manually

click the [get current device address] button to get the latest device

address.

Access to information	
Device Address:	
Current address	Read Data

(4) To modify the device address: select [communication settings], fill in the address to be modified in [set device address], and click [settings] to complete the modification.

Access to information	
Device Address:	
Current address	Read Data
Read Interval (s): 2	~
Collection Settings	
Set Interval(min): 1	🗘 Set Up

After the modification is completed, you will be prompted that the modification is successful.

				×
修改	成功			
		确	定	

(5) To modify the baud rate of the equipment: select [communication setting], select the baud rate to be modified in [serial port setting] - [baud rate], and click [setting] to complete the

modification.

aystem Coni	iguration	
Serial Port	.: 🗸	Connect
Baud Rate:	9600 🗸	Device

Chapter VI Analog Signal

6.1 4-20mA Output Signal

PM2. 5 Concentration

Range	Current
0ug/m ³	4mA
999ug/m ³	20mA

 $P (_{PM2.5}) = (I_{(Current)} - 4mA) * 62.4375 ug/m^{3}$

Where P is ug/m^3 , I is mA.

PM10 Concentration

Range	Current
0ug/m ³	4mA
1500ug/m ³	20mA

 $P~(_{PM10})~=~(I_{(current)}~-4mA)~~*93.75ug/m^3$

Where P is ug/m^3 , I is mA.

6.2 0-5V Output Signal

PM2. 5 Concentration

Range	Current
-------	---------

0ug/m ³	0V
999ug/m ³	5V

 $P (PM2.5) = V_{(voltage)} *199.8 ug/m^3$

Where P is ug/m^3 , V is V.

PM10 Concentration

Range	Current
0ug/m ³	0V
1500ug/m ³	5V

 $P (P_{M10}) = V_{(Voltage)} *300 ug/m^3$

Where P is ug/m^3 , V is V.

6.3 0-10V Output Signal

PM2. 5 Concentration

Range	Current
0ug/m ³	0V
999ug/m ³	10V

 $P (_{PM2.5}) = V_{(Voltage)} *99.9 ug/m^3$

Where P is ug/m^3 , V is V.

PM10 Concentration

Range	Current
0ug/m ³	0V
1500ug/m ³	10V

 $P (PM10) = V (Voltage) *150 ug/m^3$

Where P is ug/m^3 , V is V.

Chapter VII Fault analysis and quality assurance

7.1 Fault Analysis

NU M	Performance	Possible Faults	Solution
1	No communication signal	Cable fault	Check the power supply circuit with a multimeter
2	No Data	Interface connection failure	Interface connection failure
3	Wrong Data	Probe Wrong	Contact Us